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A model of visual recognition and categorization
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SUMMARY

To recognize a previously seen object, the visual system must overcome the variability in the object's
appearance caused by factors such as illumination and pose. Developments in computer vision suggest
that it may be possible to counter the in£uence of these factors, by learning to interpolate between stored
views of the target object, taken under representative combinations of viewing conditions. Daily life situa-
tions, however, typically require categorization, rather than recognition, of objects. Due to the open-ended
character of both natural and arti¢cial categories, categorization cannot rely on interpolation between
stored examples. Nonetheless, knowledge of several representative members, or prototypes, of each of the
categories of interest can still provide the necessary computational substrate for the categorization of new
instances. The resulting representational scheme based on similarities to prototypes appears to be compu-
tationally viable, and is readily mapped onto the mechanisms of biological vision revealed by recent
psychophysical and physiological studies.

1. INTRODUCTION

To perceive shapes as instances of object categories that
persist over time, a visual systemöbiological or arti¢-
cialömust combine the capacity for internal
representation and for the storage of object traces with
the ability to compare these against the incoming
visual stimuli, namely, images of objects. The appear-
ance of the latter is determined by (i) the shape and
the surface properties intrinsic to the object, (ii) its
disposition with respect to the observer and the illumi-
nation sources, (iii) the optical properties of the
intervening medium and the imaging system, and (iv)
the presence and location of other objects in the scene
(Ullman 1996). Thus, to detect that two images, which
may be taken seconds or years apart, belong, in fact, to
the same three-dimensional object, the visual system
must overcome the in£uence of a number of extrinsic
factors that a¡ect the way objects look.

Possible approaches to separating information on the
intrinsic shape of an object from the extrinsic factors
a¡ecting its appearance depend on the nature of the
task faced by the system. One of these tasks, recognition
(knowing a previously seen object as such), appears now
to require little more than storing information
concerning earlier encounters with the object, as
suggested by the success of view-based recognition
algorithms recently developed in computer vision
(Ullman 1996). As we shall see, it is surprisingly easy
to extend such a memory-based strategy to deal with
categorization, a task that requires the system to make

sense of novel shapes.Thus, familiarity with a relatively
small selection of objects can be used as a foundation
for processing (i.e., representing and categorizing)
other objects, never seen before.

The theory of representation outlined in the present
paper is based on the idea of describing objects in terms
of their similarities to a relatively small number of
reference shapes (Edelman 1995c; Edelman 1997b).
The theoretical underpinnings of this approach are
discussed elsewhere (Edelman & Duvdevani-Bar
1997); here, we demonstrate its viability on a variety of
objects and object classes, and discuss the implications
of its successful implementation for understanding
object representation and categorization in biological
vision.

(a) Visual recognition

If the appearance of visual objects were immutable
and una¡ected by any extrinsic factors, recognition
would amount to simple comparison by template
matching, a technique in which two patterns are
regarded as the same if they can be brought into
perfect register. As things stand, the e¡ects of the
extrinsic factors must be mitigated to ensure that the
comparison is valid. Theories of recognition, therefore,
tend to have two parts: one concentrating on the form
of the internal representation into which images of
objects are cast, and the other on the details of the
comparison process.
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Atheory of recognition that is particularly well-suited
totheconstraints imposedbyabiological implementation
has been described in Poggio & Edelman (1990). This
theory relies on the observation that the views of a rigid
object undergoing transformation such as rotation in
depth reside in a smooth low-dimensional manifold (a
`surface') embedded in the space of coordinates of points
attached to the object (Ullman & Basri 1991; Jacobs
1996). One may observe, further, that the properties of
smoothness and low dimensionality of this manifold,
whichmay be called the view space of the object, are likely
tobepreserved inwhatevermeasurement space isusedby
the front-endof thevisual system.Theoperational conse-
quence of this observation is that a new view of an object
may be recognized by interpolation among its selected
stored views, which together represent the object. A
criterion that indicates the quality of the interpolation
can be formed by comparing the stimulus view to the
stored views, by passing the ensuing proximity values
through a Gaussian nonlinearity, and by computing a
weighted sumof the results (this amounts to abasis-func-
tion interpolation of the view manifold, as described in
½ 3 a).The outcome of this computation is an estimate of
the measurement-space distance between the point that
encodes the stimulus andtheviewmanifold. If a su¤cient
number of views is available to de¢ne that manifold, this
distance canbemade arbitrarily independent of the pose
of the object, one of the extrinsic factors that a¡ect the
appearance of object views. The in£uence of the other
extrinsic factors (e.g. illumination) canbeminimized ina
similar manner, by storing examples that span the addi-
tional dimensions of the viewmanifold, corresponding to
the additional degrees of freedomof the process of image
formation.

In the recognition scenario, the tacit assumption is
that the stimulus image is either totally unfamiliar, or,
in fact, corresponds to one of the objects known to the

system. A sensible generic decision strategy under this
assumption is nearest-neighbour (Cover & Hart 1967),
which assigns to the stimulus the label of the object
that matches it optimally (modulo the in£uence of the
extrinsic factors, and, possibly, measurement noise). In
the view-interpolation scheme, the decision can be
based on the value of the distance-to-the-manifold
criterion that re£ects the quality of the interpolation (a
low value signi¢es an unfamiliar object). As we argue
next, this approach, being an instance of the generic
nearest-neighbour strategy, addresses only a small part
of the problem of visual object processing.

(b) Visual categorization

Bound by the assumption that variability in object
appearance is mainly due to factors such as illumina-
tion and pose, the standard approach to recognition
calls for a comparison between the intrinsic shape of
the viewed object (separated from the in£uence of the
extrinsic factors) and the stored representation of that
shape. According to this view, a good representation is
one that makes explicit the intrinsic shape of an object
in great detail and with high ¢delity.

A re£ection on the nature of everyday recognition
tasks prompts one to question the validity of this view
of representation. In a normal categorization situation
(Rosch 1978; Smith 1990), human observers are
expected to ignore many of the shape details (Price &
Humphreys 1989). Barring special (albeit behaviou-
rally important) cases such as face recognition, entry-
level (Jolicoeur et al. 1984) names of objects (that is,
names spontaneously produced by observers) corre-
spond to categories rather than to individuals, and it is
the category of the object that the visual system is
required to determine.Thus, the observer is confronted
with potential variation in the intrinsic shape of an
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a low dimensional
parameter space geometry image

orientation illumination

Figure 1. The process of image formation. A family of shapes (e.g. four-legged animal-like objects) can be de¢ned parame-
trically, using a small number of variables (Edelman & Duvdevani-Bar 1997), illustrated symbolically on the left by the
three `sliders' that control the values of the shape variables. These, in turn, determine the geometry of the object, e.g. the
locations of the vertices of a triangular mesh that approximates the object's shape. Finally, intrinsic and extrinsic factors
(geometry and viewing conditions) together determine the appearance of the object.
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object, because objects called by the same name do not,
generally, have exactly the same shape. This variability
in the shape (and not merely in the appearance) of
objects must be adequately represented, so that it can
be treated properly at the categorization stage.

Di¡erent gradations of shape variation call for
di¡erent kinds of action on the part of the visual system.
On the one hand, moderately novel objects can be
handled by the same mechanism that processes familiar
ones, insofar as such objects constitute variations on
familiar themes. Speci¢cally, the nearest-neighbour
strategy around which the generic recognition
mechanism isbuilt canbe allowed to handle shape varia-
tion that does not create ambiguous situations in which
two categories vie for the ownership of the current
stimulus. On the other hand, if the stimulus image
belongs to a radically novel objectöe.g. one that is
nearly equidistant, in the similarity space de¢ned by the
representational system, to two or more familiar objects,
or very distant from any such objectöa nearest neigh-
bour decision no longer makes sense, and should be
abandoned in favour of abetter procedure.

To provide a basis for a categorization procedure that
does not break down when faced with novel shapes, we
adopt the concept of a shape spaceöa representational
tool that treats all shapes, familiar or novel, equiva-
lently. As we noted above, views of any object span a
manifold (a smooth, continuous surface) in the space
of measurements carried out by the front end of a
visual system. Measuring the proximity of a stimulus
(i.e. a point in the measurement space) to such a mani-
fold, corresponding to some known object, yields the
similarity between the stimulus and that object.

Similarities measured with respect to several
previously seen objects can then be used to categorize
shapes, even those seen for the ¢rst time. In particular,
the currently viewed object can be classi¢ed as being
the same shape as some previous one, or as being
similar in shape to several previously seen objects. The
details of this procedure, which is suitable for repre-
senting both familiar and novel shapes, are described
in the next section.

2 . THE SHAPE SPACE

To put familiar and novel shapes on an equal footing,
it is useful to describe shapes as points in a common
parameter space. A common parameterization is espe-
cially straightforward for shapes that are sampled at a
preset resolution, then de¢ned by the coordinates of the
sample points (cf. ¢gure 1). For instance, a family of
shapes each of which is a c̀loud' of k points spans a 3k-
dimensional shape space (Kendall 1984); moving the k
points around in 3D (or, equivalently, moving around
the single point in the 3k-dimensional shape space)
amounts to changing one shape into another.

By de¢ning similarity between shapes via a distance
function in the shape space, clusters of points are made
to correspond to classes of shapes (i.e. sets of shapes
whose members are more similar to each other than to
members of other sets). To categorize a (possibly novel)
shape, then, one must ¢rst ¢nd the corresponding point
in the shape space, then determine its location with

respect to the familiar shape clusters. Note that while a
novel shape may fall in between the clusters, it will in
any case possess a well-de¢ned representation. This
representation may be then acted upon, e.g. by
committing it to memory, or by using it as a seed for
establishing a new cluster.

(a) The high-dimensional measurement space

Obviously, a visual system has no direct access to
whatever shape space in which the geometry of distal
objects may be de¢ned (in fact, the notion of a unique
geometrical shape space does not even make sense: the
same physical object can be described quantitatively in
many di¡erent ways). The useful and intuitive notion of
a space in which each point corresponds to some shape
can, however, be put to work by introducing an inter-
mediary concept: measurement space.

A system that carries out a large number of
measurements on a visual stimulus e¡ectively maps
that stimulus into a point in a high-dimensional space;
the diversity and the large number of independent
measurements increase the likelihood that any change
in the geometry of the distal objects ends up repre-
sented at least in some of the dimensions of the
measurement space. Indeed, in primate vision, the
dimensionality of the space presented by the eye to
the brain is roughly one million, and is determined by
the number of ¢bres in each optic nerve.

Most of this high-dimensional space is empty: a
randomly chosen combination of pixel values in an
image is extremely unlikely to form a picture of a
coherent object. The locus of the measurement-space
points that do represent images of coherent objects
depends on all the factors that participate in image
formation, both intrinsic (the shapes of objects) and
extrinsic (e.g. their pose). These points together de¢ne
the proximal (or subjective, as opposed to distal, or objec-
tive) shape space. Note that smoothly changing the shape
of the imaged object causes the corresponding point to
ascribe a manifold in the measurement space. The
dimensionality of this manifold depends on the number
of degrees of freedom of the shape changes; for example,
simple morphing of one shape into another produces a
one-dimensional manifold (a curve). Likewise, rotating
the object in depth (a transformationwith two degrees of
freedom) gives rise to a two-dimensionalmanifoldwhich
we call the view space of the object. It turns out that the
proximal shape space, produced by the joint e¡ects of
deformation and transformation, can be safely consid-
ered a locally smooth low-dimensional manifold
embedded in the measurement space (Edelman &
Duvdevani-Bar1997).

(b) Dimensionality reduction and the proximal
shape space

In the above formulation, the categorization problem
becomes equivalent to determining the location of the
measurement-space representation of the stimulus
within the proximal shape space. Our approach to this
problem is inspired by the observation that the location
of a point can be precisely de¢ned by specifying its
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distance to some prominent reference points, or land-
marks (Edelman & Duvdevani-Bar 1997). Here
distance is meant to capture di¡erence in shape (i.e.
the amount of deformation), therefore its estimation
must exclude (i) components of measurement-space
distance that are orthogonal to the shape space, as
well as (ii) components of shape transformation, such
as rotation. As we shall see, a convenient computa-
tional mechanism for distance estimation that satis¢es
these two requirements is a module tuned to a parti-
cular shape, that is, designed to respond selectively to
that shape, irrespective of its transformation. A few
such modules, tuned to di¡erent reference shapes, e¡ec-
tively reduce the dimensionality of the representation
from that of the measurement space to a small
number, equal to the number of modules (¢gure 3). In
the next section, we describe a system for shape cate-
gorization based on a particular implementation of
this approach, which we call the c̀horus of prototypes'
(Edelman 1995b); its relevance as a model of shape
processing in biological vision is discussed in ½ 5.

3. THE IMPLEMENTED MODEL

A module tuned to a particular shape will ful¢l the
¢rst of the two requirements stated aboveöignoring

the irrelevant components of the measurement-space
distanceöif it is trained to discriminate among objects
all of which belong to the desired shape space. Such
training imparts to the module the knowledge of the
relevant measurement-space directions, by making it
concentrate on the features that help discriminate
between the objects. To ful¢l the second requirementö
insensitivity to shape transformationsöthe module
must be trained to respond equally to di¡erent views
of the object to which it is tuned. A trainable computa-
tional mechanism capable of meeting these two
requirements is a radial basis function (RBF) interpo-
lation module.

(a) The RBF module

When stated in terms of an input^output relation-
ship, our goal is to build a module that would output a
non-zero constant for all views of a certain target
object, and zero for any view of all the other objects in
the training set. Because only a few target views are
usually available for training, the problem is, in fact,
to interpolate the view space of the target object, given
some examples of its members. With basis function
interpolation, this problem is easily solved by a distrib-
uted network, whose structure can be learned from
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Figure 2. The `chorus' scheme (½ 3). The stimulus is ¢rst projected into a high-dimensional measurement space, spanned by a
bank of receptive ¢elds. Second, it is represented by its similarities to reference shapes. In this illustration, only three modules
respond signi¢cantly, spanning a shape space that is nominally three-dimensional (in the vicinity of the measurement-space
locus of gira¡e images). The inset shows the structure of each module. Each of a small number of training views, vi, serves as
the centre of a Gaussian basis function G(a, b;�) � exp(kaÿ bk2=�2); the response of the module to an input vector x is
computed as y � �twtG(x; vt). The weights wt and the spread parameter � are learned as described in (Poggio & Girosi
1990). It is important to realize that the above approach, which amounts to an interpolation of the view space of the training
object using the radial basis function (RBF) method, is not the only one applicable to the present problem. Other
approaches, such as interpolation using the multilayer perceptron architecture, may be advantageous, e.g., when the
measurement space is `crowded', as in face discrimination (Edelman & Intrator 1997).
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examples (Broomhead & Lowe 1988; Poggio & Girosi
1990).

According to this method, the interpolating function
is constructed out of a superposition of basis functions,
whose shape re£ects the prior knowledge concerning
the change in the output as one moves away from the
data point. In the absence of evidence to the contrary,
all directions of movement are considered equivalent,
making it reasonable to assume that the basis function
is radial (that is, it depends only on the distance
between the actual input and the original data point,
which serves as its centre). The resulting scheme is
known as radial basis function (RBF) interpolation.
Once the basis functions have been placed, the output
of the interpolation module for any test point is
computed by taking a weighted sum of the values of all
the basis functions at that point.

An application of RBF interpolation to object recog-
nition has been described in (Poggio & Edelman 1990);
the RBF model was subsequently used to replicate a
number of central characteristics of the process of
recognition in human vision (BÏltho¡ & Edelman
1992). In its simple version, one basis function is used
for (the measurement-space representation of ) each
familiar view. The appropriate weight for each basis is
then computed by an algorithm that involves matrix
inversion (a closed-form solution exists for this case).
This completes the process of training the RBF

network. To determine whether a test view belongs to
the object on which the network has been trained, this
view (that is, its measurement-space representation) is
compared to each of the training views.This step yields
a set of distances between the test view and the training
views that serve as the centres of the basis functions. In
the next step, the values of the basis functions are
combined linearly to determine the output of the
network (see ¢gure 2).

(b) Training individual modules

In the computational experiments described below,
ten di¡erent reference objects were chosen at random
from a commercially available database of several
hundreds of shapes (see ¢gure 4). To minimize the
memory requirements of the scheme, we trained the
modules on a few views per object, strategically placed
to optimize the coverage of its view space.The choice of
the training views was guided by the following three
requirements: (i) approximately constant output of the
module for di¡erent test views of the same object, (ii)
tight clustering of the views of each object in the space
of the outputs of the modules, and (iii) wide separation
between clusters corresponding to the di¡erent objects in
that space. These three criteria were combined into a
single canonical distortion measure (Baxter 1995), used
to guide the optimal choice of views in a procedure
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Figure 3. A schematic illustration of the shape-space manifold de¢ned by a chorus of three active modules (lion, penguin,
frog). Each of the three reference-shape modules is trained to ignore the viewpoint-related factors (the view space dimension,
spanned by views that are shown explicitly for lion), and is thus made to respond to shape-related di¡erences between the
stimulus (here, the gira¡e}) and its `preferred' shape. The actual dimensionality of the space spanned by the outputs of the
modules (Edelman & Intrator 1997), can be lower than its nominal dimensionality (equal to the number of modules); here
the space is shown as a two-dimensional manifold.
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known as vector quantization (Linde et al. 1980). This
resulted in a choice of about 15 views per object, which
were then used to train the RBFmodules, following the
standard algorithm described in Poggio &Girosi (1990).
The only other free parameter of the RBF scheme, the
width of the Gaussian basis functions, was chosen so as
to minimize the categorization error of the resulting
system over the ten training objects.

4 . EXPERIMENTAL RESULTS

We assessed the performance of the c̀horus' scheme
in three di¡erent tasks: (i) recognition of novel views
of the ten objects on which the system had been
trained; (ii) categorization of 20 novel objects
belonging to categories of which at least one exemplar
was available in the training set; and (iii) representa-
tion of ten radically novel objects, picked at random
from the database.

(a) Recognition

To test the ability of the system to generalize recogni-
tion to novel views of the trained objects, we
experimented with three di¡erent recognition algo-
rithms. The performance of each algorithm was
evaluated on a set of 169 views of each of the trained
objects, taken around the canonical orientation
(Palmer et al. 1981) over a range of +608 in azimuth
and elevation, at 108 increments.

First, we computed the performance of each of the ten
RBFmodules, using individually determined thresholds
(set to the mean activity of the module on trained views
minus one standard deviation).The generalization error
rate (de¢ned as the mean of the miss and the false alarm
error rates) for this algorithmwas 8%.

We next considered the `winner-takes-all' (WTA)
algorithm, according to which the outcome of the
recognition step is the label of the module that gives
the strongest response to the current stimulus (in the

patterns of module activation shown in table 1, entries
for modules that responded, on average, the strongest
are marked by bold typeface). The error rate of the
WTA method was 12%.

Finally, we trained a second-level RBF module to
map the ten-element vectors of the ¢rst-level RBF
units into ten-element vectors in which the single
proper element (signifying the identity of the stimulus)
was set to 1, and the others to 0. This approach takes
advantage of the observation that important informa-
tion concerning the shape of the stimulus is contained
in the entire pattern of activities that it induces over the
reference-object modules (cf. table 1), and not merely in
the identity of the strongest-responding module
(Edelman et al. 1992). Indeed, the WTA algorithm
applied to the second-level RBF output resulted in an
error rate of 6% (computed over all 169 views of each
of the ten objects).

(b) Categorization

Our second experiment tested the ability of the
c̀horus' scheme to categorize 20 `moderately' novel
objects, each of which belonged to one of the categories
present in the original training set of ten objects. To
visualize the utility of representation by similarity to
the training objects, we used multidimensional scaling
(Shepard 1980) to embed the ten-dimensional layout of
points corresponding to various views of test objects
into a two-dimensional space (¢gure 6). An examina-
tion of the resulting plot reveals a number of satisfying
properties, such as clustering of views by object identity,
and grouping of view clusters by similarity between the
corresponding objects.

To support this impression by quantitative data, we
used the ten-dimensional representation of the 20 novel
objects in two tasks: categorization and recognition.
The same arrangement of 169 test views per object as
before was used here. In the categorization task, an
error was counted for each view that was attributed to
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cow1 cat2 A1 General tuna

Landrover Nissan F16 fly T. rex

Figure 4. The ten training objects used as reference shapes in the computational experiments described in the text. The
objects were chosen at random from a database available from Viewpoint Datalabs, Inc. (http://www.viewpoint.com/).
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an incorrect category by a k-nearest neighbour (k-NN)
algorithm (Duda & Hart 1973), as explained below.

First, we assigned a category label to each of the ten
training objects (for instance, c̀ow' and c̀at' were both
labelled as `quadrupeds'). Second, we represented the
stimulus view as a ten-element vector of RBF-module
responses. Third, we determined the labels of the k=16
nearest neighbours of the stimulus among the 169610
vectors corresponding to all the views of the reference
objects (other values of k, ranging from 2 to over 100,

yielded essentially the same results). Fourth, we let the
majority of those k votes decide the category label of the
stimulus view. This procedure resulted in a misclassi¢-
cation rate of 21% (see table 2).

In the recognition task (i.e. when all 20 object iden-
tity labels were used instead of the seven category
labels), the error rate was 17%. When only 25 views
spanning the range of +208 around the canonical
orientation of each object were considered, the recogni-
tion error rate dropped to 1.5%.

Visual recognition and categorization S. Edelman and S. Duvdevani-Bar 1197
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Table 1. RBF activities (averaged over all 169 test views) for the trained objects

(Each row shows the average activation pattern induced by views of one of the objects over the ten reference-object RBF
modules; boldface indicates the largest entry (see ½ 4 a).)

cow1 cat 2 A1 General tuna
Land-
rover Nissan F16 £y T. Rex

cow 1 2.84 0.76 0.08 0.27 0.82 0.24 0.49 0.45 0.79 0.19
cat 2 1.15 1.80 0.06 0.20 1.14 0.23 0.64 0.38 0.83 0.23
A1 0.22 0.10 2.23 0.24 0.24 0.07 0.05 0.10 0.90 0.05
General 1.09 0.41 0.52 2.45 0.56 0.09 0.23 0.54 1.96 0.44
tuna 0.55 0.56 0.02 0.08 2.96 0.08 0.54 0.44 0.47 0.21
Landrover 0.65 0.57 0.11 0.05 0.97 1.51 0.64 0.24 0.58 0.08
Nissan 0.96 1.07 0.04 0.13 1.86 0.58 2.46 0.90 0.81 0.28
F16 0.74 0.50 0.06 0.21 0.99 0.12 0.65 1.99 0.74 0.24
£y 0.45 0.27 0.17 0.27 0.33 0.07 0.14 0.19 2.86 0.20
T. Rex 0.36 0.30 0.03 0.14 0.56 0.03 0.16 0.13 0.88 3.04

quadrupeds

cow2 piglet tiger camel rhino

figures

cars

aircraft

chimp ape polar bear whale killer whale shark

fish

tankSubaruSuzukiVWtruck

dinosaurs

F15 MiG27 Parasaurolophus Velociraptor

Figure 5. The 20 novel objects used to test the categorization ability of the model (see ½ 4 b); objects are grouped by shape
category.
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(c) Representation

Our third experiment tested the ability of c̀horus' to
represent and discriminate ten novel objects, picked at
random from the database. We used again the same
arrangement of 169 test views per object as before. The
representation of the test objects is summarized in table
3, which shows the activation of the ten reference-shape
RBFmodules, produced by each object. It is instructive
to consider the patterns of similarities revealed in this
distributed ten-dimensional representation of the test
objects. For instance, the g̀ira¡e' turns out to be
similar to the two quadrupeds present in the training
set (cow and cat), as well as to the dinosaur (Tyranno-
saurus rex), for obvious reasons (it is also similar to the
tuna and to the £y, for reasons which are less obvious,
but immaterial: both these shapes are similar to most
test objects, which makes their contribution to the
representation uninformative). Thus, in the spirit of
¢gure 3, the gira¡e can be represented by the vector
[1.40 0.99 1.17] of similarities to three reference objects
which turn out to be informative in this discrimination
context (cow, cat, andT. rex).

To visualize the representation of the novel objects,
we used again multidimensional scaling (¢gure 8). As
for the same-category objects, the model clustered
views by object identity, and grouped view clusters by
similarity between the corresponding objects. In a
quantitative estimate of recognition performance, the
k-NN algorithm yielded an error rate of 10% over the
169 test views of the ten novel objects. When only 25

views spanning the range of +208 around the cano-
nical orientation of each object were considered, the
error rate dropped to 0.5%. This improvement may be
attributed in part to the exclusion of non-representative
views, e.g., the head-on view of the manatee, which is
easily confused with the top view of the pawn.

5. DISCUSSION

We have described a computational model of shape-
based recognition and categorization, which encodes
stimuli by their similarities to a number of reference
shapes, themselves represented by specially trained
dedicated modules. The performance of the model
suggests that this principle may allow for e¤cient
representation, and, in most cases, correct categoriza-
tion, of shapes never before encountered by the
observeröa goal which we consider of greater impor-
tance than mere recognition of previously seen objects,
and which so far has eluded the designers of computer
vision systems.

(a) Implications for theories of visual
representation

In computer vision, one may discern three main
theoretical approaches to object representation:
pictorial representations, structural descriptions, and
feature spaces (Ullman 1989). According to the ¢rst
approach, objects are represented by the same kind of
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Figure 6. A 2D plot of the ten-dimensional shape space spanned by the outputs of the RBF modules (same-category test
objects); multidimensional scaling (MDS) was used to render the 10D space in 2D, while preserving as much as possible
distances in the original space (Shepard 1980). Each point corresponds to a test view of one of the objects; nine views of
each of the ten training and ¢ve novel objects (camel, polar bear, shark, Subaru, F15, denoted by *) are shown. Left: the
layout of the test views of all 15 objects. Right: an enlargement of the central portion of the plot. Note that views belonging to
the same object tend to cluster (the residual spread of each cluster can be attributed to the constraint, imposed by MDS, of
¢tting the two dimensions of the viewpoint variation and the dimensions of the shape variation into the same 2D space of the
plot). Note also that clusters corresponding to similar objects (e.g. the quadrupeds) are near each other. The icons of the
objects appear near the corresponding view clusters; those of ¢ve novel objects are drawn in cartouche.
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information one ¢nds in a picture: coordinates of
primitive elements (which may be as simple as intensity
values of pixels in an image). Because of the e¡ects of
factors extrinsic to shape, this mode of representation
can be used for recognition only if it is accompanied
by a method for normalizing the appearance of
objects. The normalization may be carried out expli-
citly, as in recognition by alignment (Ullman 1989), or
implicitly, as in recognition by linear combination of
images (Ullman & Basri 1991).

It is not easy to adapt the pictorial approach to carry
out categorization rather than recognition. One reason
for that is the excessive amount of detail in pictures:
much of the information in a snapshot of an object is
unnecessary for categorization, as attested by the
ability of human observers to classify line drawings of
common shapes (Biederman & Ju 1988; Price &
Humphreys 1989). Although a metric over images that
would downplay within-category di¡erences may be
de¢ned in some domains, such as classi¢cation of
stylized c̀lip art' drawings (Ullman 1996, p. 173),
attempts to classify pictorially represented 3D objects
(vehicles) met with only a limited success (Shapira &
Ullman 1991).

We believe that extension of alignment-like
approaches from recognition to categorization is
problematic for a deeper reason than mere excess of
information in images of objects. Note that both stages
in the process of recognition by alignment (normaliza-

tion and comparison; see Ullman 1989) are geared
towards pairing the stimulus with a single stored repre-
sentation (which may be the average of several actual
objects, as in Basri's algorithm (Basri 1996)). As we
pointed out in the introduction, this strategy, designed
to culminate in a winner-takes-all decision, is inher-
ently incompatible with the need to represent radically
novel objects.

The ability to deal with novel objects has been consid-
ered so far the prerogative of structural approaches to
representation (Marr & Nishihara 1978; Biederman
1987).The structural approach employs a small number
of generic primitives (such as the thirty-oddgeons postu-
lated by Biederman), along with spatial relationships
de¢ned over sets of primitives, to represent a very large
variety of shapes. The classi¢cation problem here is
addressed by assigning objects that have the same struc-
tural description to the same category.

In principle, even completely novel shapes can be
given a structural description, because the extraction
of primitives from images and the determination of
spatial relationships is supposed to proceed in a purely
bottom-up, or image-driven fashion. In practice,
however, both these steps have so far proved to be
impossible to automate. State-of-the-art computer
vision systems either ignore the challenge posed by the
problems of categorization and of representation of
novel objects (Murase & Nayar 1995), or treat categor-
ization as a byproduct of recognition (Mel 1996).
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Table 2. Categorization results for the 20 test objects shown in ¢gure 5

(Each row corresponds to one of the test objects; the proportion of the 169 test views of that object attributed to each of the
seven categories present in the training set appears in the appropriate column. Each row sums to somewhat less than 1.0,
because near-zero entries were omitted for clarity; boldface indicates the largest entry in each row. The mean
misclassi¢cation rate over all 169 views of all objects is 21%; when only 13 views are considered (spaced at 10³ around the
equator of the viewing sphere, centred on the canonical view), the misclassi¢cation rate drops to 15%.)

quadrupeds ¢gures ¢sh cars aircraft £y dinosaurs

categories objects cow1 cat 2 A1
Gen-
eral tuna

Land-
rover Nissan F16 £y T. Rex

quadrupeds cow 2 0.66 0.29 ö ö ö 0.03 ö ö ö ö
piglet 0.76 0.05 ö 0.01 ö 0.10 ö ö 0.04 ö
tiger 0.18 0.52 0.01 0.01 0.01 0.21 ö 0.01 0.01 ö
camel 0.61 ö ö ö ö 0.37 ö ö ö ö
rhino 0.62 0.08 ö ö ö 0.04 0.14 0.10 ö ö

¢gures chimp 0.22 0.04 0.57 ö ö ö 0.02 ö 0.11 ö
ape 0.02 0.05 0.52 0.02 0.01 ö ö 0.03 0.31 ö
polar-bear 0.02 0.07 ö 0.83 ö ö ö 0.01 0.05 ö

¢sh whale 0.05 0.04 ö ö 0.53 0.3 ö 0.06 ö ö
killer-whale 0.04 0.02 0.01 ö 0.83 0.02 ö 0.02 0.02 ö
shark 0.01 0.02 ö ö 0.84 0.04 0.05 0.01 ö ö

cars truck 0.01 0.03 ö ö ö ö 0.93 ö ö ö
VW ö 0.01 ö ö 0.01 0.01 0.92 ö 0.01 ö
Suzuki 0.05 0.11 ö ö 0.13 0.41 0.28 ö ö ö
Subaru ö ö ö ö ö 0.01 0.96 ö ö ö
tank 0.02 0/02 ö ö 0.03 ö 0.71 0.19 ö ö

aircraft F15 ö 0.01 ö 0.01 ö ö ö 0.92 ö 0.03
MiG27 ö ö ö ö 0.04 0.17 ö 0.78 ö ö

dinosaurs Parasaurolophus ö ö ö ö 0.04 ö ö ö ö 0.95
Velociraptor ö ö ö ö 0.21 ö ö 0.10 ö 0.67
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In comparison to all these approaches, the c̀horus'
model is designed to treat both familiar and novel
objects equivalently, as points in a shape space spanned
by similarities to a handful of reference objects
(according to Ullman's taxonomy, this makes it an
instance of the feature-based approach, the features
being similarities to entire objects). The minimalistic
implementation of c̀horus' described in the preceding
sections achieved recognition performance on a par
with that of the state-of-the-art computer vision
systems, despite relying only on shape cues where other
systems use colour and/or texture together with shape
(Murase & Nayar 1995; Mel 1996; Schiele & Crowley
1996). Furthermore, this performance was achieved
with a low-dimensional representation (ten nominal
dimensions), whereas the other systems typically
employ about a hundred dimensions; for a discussion of
the importance of low dimensionality in this context, see

(Edelman & Intrator 1997). Finally, our model also
exhibited signi¢cant capabilities for shape-based cate-
gorization and for useful representation of novel
objects; it is reasonable to assume that its performance
in these tasks can be improved, if more lessons from
biological vision are incorporated into the system.

(b) Implications for understanding object
representation in primate vision

The architecture of c̀horus' re£ects our belief that a
good way to achieve progress in computer vision is to
follow examples set by biological vision. Each of the
building blocks of c̀horus', as well as its general
layout, can be readily interpreted in terms of well-
established properties of the functional architecture of
the primate visual system. The basic mechanism in the
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Table 3. RBF activities (averaged over all 169 test views) for the ten test objects shown in ¢gure 7

(In each row, corresponding to a di¡erent test object, entries within 50% of the maximum for that row are marked by
boldface. These entries constitute a low-dimensional representation of the test object whose label appears at the head of the
row, in terms of similarities to some of the ten reference objects. Unlike in table 1, the test objects here are not familiar to the
system; their representation is made possible by the signi¢cant response of at least some of the reference-object modules to
novel stimuli. The utility of this representation is illustrated by the sensible layout of its equivalent shape space (¢gure 8):
objects whose shapes are similar are indeed grouped together. For instance, the `manatee' (an aquatic mammal known as the
sea cow) turns out to be like (in decreasing order of similarity), a `tuna', a `cow', and, interestingly, but perhaps not
surprisingly, a `Nissan' wagon.)

cow1 cat 2 A1 General tuna Landrover Nissan F16 £y T. Rex

butter£y 1.19 0.81 0.05 0.18 1.03 0.35 0.74 0.53 0.88 0.29
frog 0.19 0.12 0.29 0.09 0.20 0.08 0.08 0.08 0.99 0.10
tennis shoe 0.25 0.31 0.05 0.06 0.79 0.15 0.40 0.27 0.55 0.09
pump 0.77 0.58 0.02 0.09 1.12 0.13 0.75 0.46 0.65 0.12
Beethoven 0.04 0.02 0.12 0.01 0.04 0.02 0.00 0.01 0.39 0.00
gira¡e 1.40 0.99 0.02 0.28 1.64 0.07 0.68 0.78 1.28 1.17
pawn 0.24 0.08 0.21 0.16 0.08 0.02 0.01 0.02 1.08 0.03
manatee 0.84 0.71 0.07 0.17 1.49 0.13 0.76 0.61 0.71 0.16
Fiat 0.89 0.80 0.00 0.07 1.98 0.17 1.61 0.72 0.59 0.17
Toyota 1.17 1.06 0.08 0.12 1.63 0.87 1.67 0.66 0.71 0.18

giraffe pawn manatee Fiat Toyota

Beethovenpumptennis shoefrogbutterfly

Figure 7. The ten novel objects, picked at random from the object database, which we used to test the representational
abilities of the model (see ½ 4 c).
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implementation of this scheme is a receptive ¢eldöprob-
ably the most ubiquitous functional abstraction of the
physiologist's tuned unit, widely used in theories of
biological information processing (Edelman 1997a).
The receptive ¢elds at the front end of c̀horus' are
intended to parallel those of the photoreceptors (the use
of centre-surround receptive ¢elds at a variety of orien-
tations and scales, as in the primate visual cortex, should
improve the present results). Furthermore, an RBF
module of the kind used in the subsequent stage of
c̀horus' can be seen also as a receptive ¢eld, tuned both
to a certain location in the visual ¢eld (de¢ned by the
extent of the front-end receptive ¢elds) and to a certain
location in the shape space (corresponding to the shape
of the object onwhich the module has been trained).

Functional counterparts both of individual compo-
nents (basis functions) of RBF modules and of entire
modules have been found in a recent electrophysiolo-
gical study of the inferotemporal (IT) cortex in awake
monkeys (Logothetis et al. 1995). The former corre-
spond to cells tuned to particular views of objects
familiar to the animal; the latter to cells that respond
nearly equally to a wide range of views of the same
object. It is easy to imagine how an ensemble of cells of
the latter kind, each tuned to a di¡erent reference
object, can span an internal shape space, after the
manner suggested above.

While a direct test of this conjecture still awaits
experimental con¢rmation, indirect evidence suggests
that a mechanism not unlike the c̀horus of prototypes'
is deployed in the ITcortex. This evidence is provided
by the work of K. Tanaka and his collaborators, who
studied object representation in the cortex of anaesthe-
tized monkeys (Tanaka 1992; Tanaka 1996). These
studies revealed cells tuned to a variety of simple
shapes, arranged so that units responding to similar
shapes were clustered in columns running perpendi-

cular to the cortical surface; the set of stimuli that
proved e¡ective depended to some extent on the
monkey's prior visual experience. If further experimen-
tation reveals that a given object consistently activates a
certain possibly disconnected subset of the columns,
and if that pattern of activation smoothly changes in
response to a continuous change in the shape or the
orientation (Wang et al. 1996) of the stimulus, the prin-
ciple of representation of similarity that serves as the
basis of c̀horus' would be implicated also as the prin-
ciple behind shape representation in the cortex.

The results of several recent psychophysical studies of
object representation in primates support the above
conjecture. In each of a series of experiments, which
involved subjective judgement of shape similarity and
delayed matching to samples, human subjects (Edelman
1995a; Cutzu & Edelman1996) andmonkeys (Sugihara
et al. 1996) have been confronted with several classes of
computer-rendered 3D animal-like shapes, arranged in
a complex pattern in a common parameter space (cf.
Shepard & Cermak 1973). In each experiment, proces-
sing of the subject data by multidimensional scaling
(used to embed points corresponding to the stimuli into
a 2D space for the purpose of visualization) invariably
revealed the low-dimensional parametric structure of
the set of stimuli. In other words, the proximal shape
space internalized by the subjects formed a faithful
replica of the distal shape space structure imposed on the
stimuli. Furthermore, this recovery was reproduced by a
c̀horus'-likemodel, trainedon a subset of the stimuli and
subsequently exposed to the same test images shown to
the subjects. As we argue elsewhere, these ¢ndings may
helpunderstandthegeneral issue of cognitive representa-
tion, and, in particular, the manner in which
representation can conform (be faithful), to its object
(Edelman & Duvdevani-Bar 1997; Edelman 1997b);
their full integration will require a coordinated e¡ort in
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Figure 8. A 2D MDS plot of the ten-dimensional shape space spanned by the outputs of the RBF modules (novel test
objects). As in ¢gure 6, each point corresponds to a test view of one of the objects; views of the ten training objects and of
three novel objects (gira¡e, Toyota, manatee, denoted by *) are shown. Left: the layout of the test views of all 13 objects.
Right: an enlargement of the central portion of the plot. As for the same-category test objects, views belonging to the same
object cluster together, and clusters corresponding to similar objects are near each other. The three novel objects are circled.
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the ¢elds of behavioural physiology, psychophysics, and
computationalmodelling.

We thank M. Dill, N. Intrator, P. Sinha, and two anonymous
reviewers for helpful suggestions concerning the manuscript.
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